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An Optical Method for Producing Structure-Factor Graphs 
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Structure-factor graphs (Bragg & Lipson, 1936) may be very informative at certain stages of a 
structure determination but the labour involved in their preparation is sometimes considered to be 
too great for profitable use. A simple extension of optical transform theory shows that they can be 
prepared easily and with sufficient accuracy for most purposes by the methods available for prepar- 
ing optical transforms. Some examples are given, together with calculated graphs for comparison. 

Introduction 

In the course of a study of the projection on the basal 
plane of a hexagonal inorganic crystal optical-trans- 
form methods were tried but were found to be of 
limited use. The projection under consideration has 
the probable two-dimensional space group p6m and 
hence general positions of twelve-fold multiplicity. 
I t  is therefore difficult to consider first the transform 
of a single asymmetric unit and later the combined 
transform of all the related asymmetric units as sug- 
gested by Hanson, Lipson & Taylor (1953). The trans- 
form is, in fact, more obviously affected by the pat- 
terns produced by the symmetrical repetition of each 
atom than by the arrangement of the atoms within 
the asymmetric unit. This suggests that it may be 
better to consider the problem atom by atom rather 
than in terms of the whole asymmetric unit. Since 
the number of independent observable reflexions is 
small (nine for this structure) it seemed likely that 
structure-factor graphs (Bragg & Lipson, 1936)would 
provide a useful method of approach and attention 
was turned to the possibility of reducing labour by 
preparing them optically. The technique proves to be 
quite simple for this two-dimensional space group and 

is applicable to all the other 16 groups, although for 
some it is a little more troublesome. 

Use of s tructure-factor  graphs  

Structure-factor graphs are contoured maps showing 
the combined contribution of an atom and its sym- 
metry-related counterparts to a particular reflexion as 
a function of the position of the atom in the unit cell. 
They are probably most useful in semi-quantitative 
work in the earlier stages of structure determinations 
and can give rapid indications of the general plau- 
sibility of an atomic arrangement in terms of the 
agreement with selected reflexions. At a later stage 
the direction of probable atomic movements may be 
deduced and a useful feature is the possibility of 
assessing the 'sensitivity' of various atomic positions; 
where the slope of the structure-factor graph is steep, 
small movements make significant changes in the total 
structure amplitude but atoms lying on plateau-like 
regions may be moved a considerable distance without 
affecting that particular reflexion. Since structure- 
factor graphs are rarely used when accurate quantita- 
tive measurements are needed it seems probable that 
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optically-produced representations will give ~11 the 
information normally required. 

Extension of optical- transform theory 

If a mask containing holes punched at  positions 
representing atomic sites in a single unit cell is placed 
in the parallel beam of an optical diffractometer the 
intensity at  a point in the observed diffraction pat tern 
is proportional to the square of the Fourier transform 
of the-unit  cell contents. Thus, if the pat tern is sampled 
at reciprocal-lattice points, the amplitude at these 
points is proportional to the structure amplitude 
which would be associated with the reciprocal-lattice 
points in the X-ray diffraction pat tern for the struc- 
ture (e.g. Hanson, Lipson & Taylor, 1953). 

The optical transform may thus be regarded as a 
graph of the structure factor as a function of the indices 
h and k treated not as integral numbers but as con- 
tinuous variables 

2"(h, k) = Z, fn exp 2~i(hxn+kyn) . 
n 

xn and yn in this equation have specific values and 
fn is the scattering factor for the nth atom. 

Remembering tha t  x and y are coordinates in real 
space and h and /c in reciprocal space, and tha t  the 
Fourier-transform relationship is entirely reciprocal, 
we could interchange the variables and write 

2"(x, y) = .X f exp 2~i(xhn+ylcn) . 
n 

2' is now a function of x and y as continuous variables 
for given values of h~ and kn ; in other words, it is the 
structure-factor graph. Since only one atom is now 
under consideration, the value of f is constant. 

Thus, if holes are punched to represent the 
reciprocal-lattice points hnk~, the resulting optical 
transform will be, in effect, the structure-factor graph 
for the corresponding reflexion. 

The principle becomes clearer if we consider a 
simple example. Let us consider the two-dimensional 
space group prom. 

The coordinates of the equivalent positions are 

x,y;  ~,y; x ,y;  x , ~ .  

The complete structure-factor expression for a single 
atom and its space-group related counterparts is" 

F(h, k) = f exp 2~i(hx+ky) +f  exp 2~i(h~+lcy) 
+ f  exp 2gi (h.~ + k~) + f  exp 2zi (hx + k~) 

which may be re-written 

2"(x, y) = f exp 2zi(xh+y/c)+f exp 2xd(xh+yk) 
+ f  exp 27d(xh+y[c) +f  exp 2zi(xh+yfc) . 

If a mask is punched with holes at poi_nts corre- 
sponding to reciprocal-lattice points h, ]c; h, k; h, ]c; 
h, k (for a specific h, k) its diffraction pat tern will 

then be the structure-factor graph for the reflexion 
having those indices. 

As a second example, for the two-dimensional space 
group which prompted this work- -p6m-- the  equiv- 
alent positions are + ( x , y ;  ~ , x - y ;  y - x ,  5; y ,x ;  
~ , y - x ;  x - y , y )  and the full structure-factor ex- 
pression for a single atom is 

F(h, lc) = f exp 2~i(hx+ky) +f  exp 27d[h~+k(x-y)] 
+ f  exp 2~i[h(y-x) +k~] 
+ f  exp 2~i(hy+lcx)+f exp 2~i[h~+lc(y-x)] 
÷ f  exp 2xd[h(x-y)+/c~] 
÷ f  exp 2~ i (hS+k~)+f  exp 27d[hy+k(y-x)] 
+ f  exp 2~i [h ( x -  y) +/cx] 
+ f  exp 2zi  (h~ + k~) ÷ f  exp 2zi [hx + k (x-y)] 
+ f  exp 2~i [h ( y -  x) + ky].  

This can be re-written 

2"(x, y) = f exp 
+ f  exp 
+ f  exp 
+ f  exp 
+ f  exp 
+ f  exp 
+ f  exp 
+ f  exp 

and the 

2~i (xh + yk ) + f exp 2~i [xk + y (h + k)] 
2ui[x(h+k)+yh] 
2gi(xlc +yh)+f exp 27d[x(h +k) +y/c] 
27d[xh +y(h +k)] 
2zi (xh + y~) + f  exp 2~i [xk + y (h +/c)] 
2gi [x (h + It) + yh] 
2~i (x~ + yh) + f  exp 2xd [x (h +/c) + yk] 
2~i[xh + y(h + ]c)] , 

holes in the mask have to be punched at 

±[h, k; k, (h+k);  (h+k), h; k, h; (h+k), k; h, (h+k) ] .  

Complicat ions  for certain two-d imens iona l  
space groups 

The t reatment  becomes less straightforward when the 
space group is non-centrosymmetrical and also when 
translations of half a unit cell are involved. The group 
pg may be used to illustrate both points. 

The equivalent positions are x, g; ~, ½+g. Thus the 
combined expression for one atom is 

F(h, k) = f exp 2~i(hx+ky) +f  exp 2~i(h~+ky+½k) 

which may be re-written as before. 

(1) if/c is even 
F(x, y) = f exp 27d(xh+yk)+f exp 27d(xh+yk) 

and 
(2) if k is odd 

2"(x, y) = f exp 2~i(xh+yk) +f  exp [2~i(xh+yk) + i z ] .  

The graph for a reflexion for which k is even may  then 
be produced by punching holes at h, k and h, k. This 
gives the complex amplitude of the transform. If the 
real and imaginary parts are required separately they  
may be obtained by adding or subtracting the centro- 
symmetrically-related set of holes to the mask. 
'Subtraction'  in optical terms means a change of 
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phase of ~ and this may be accomplished by using 
mica sheets and polarized light in the manner described 
by  Hanson, Lipson & Taylor (1953). 

The graph for a reflexion with ]c odd requires a 
phase change of ~ for the hole representing h,/c and 
again this can be achieved by using mica and polarized 
light. The complete set would thus be 

k e v e n -  complex h, It; h,/¢" 
/c even - real part  h,/c; h, k; h, It; h, ~: 
k even - imaginary h, ]c; h,/c; h, ]c~; h, ~ :  
/c odd - complex h, It; h,/c~" 
k odd - real part  h, k; h, k; h,/c.; h, k~" 
/c odd - imaginary h, k; h, ]c~; h,/c~; h, k" 

(the subscript z indicates holes for which a phase 
change of ~ relative to the others is required). 

spection--noting tha t  each time a zero line is crossed 
the sign changes---or, if this leads to ambiguities, 
by the method of Pinnock & Taylor (1955). In  Fig. 1 (a) 
is shown the structure-factor graph for the reflexion 
h = 1,/c = 2 of the two-dimensional space group p6m 
and in Fig. 1 (b) is the corresponding graph as given 
by Bragg & Lipson. The same graph could be regarded 
as the real part  of the structure-factor graph for p3ml  ; 
the imaginary part  is shown in Fig. 2 (a) with the cal- 
culated version in Fig. 2(b). The complex form, which 
was not calculated by Bragg & Lipson, is shown in 
Fig. 3 (a). Fig. 3 (b) shows the zero contours of the real 
and imaginary parts superimposed; at the intersections 
the complex function has zero amplitude. In Fig.4(a) 
and (b) are shown the optical and calculated graphs 
for ~04m and in Fig. 5(a) and (b) the graphs for p4g 
with (h +/c) odd. In both instances the reflexion chosen 
is h = 2, k = 3 .  

Practical  details  and a compar i son  with  
calculated structure-factor  graphs  

The examples illustrating this paper were prepared 
using an optical diffractometer and pantograph punch 
of the size described by Hughes & Taylor (1953). I t  
was found most convenient for 1 mm. diameter holes 
to be used and the original drawing of the reciprocal 
net to be on a scale of 10 cm. = 1 reciprocal/~ngstrSm 
unit. The pantograph punch reduces this by a factor 
of 12 so that  the scale on the mask is 8.33 ram. = 
1 reciprocal AngstrSm unit. A straight row of holes 
with a spacing equivalent to ½ reciprocal AngstrSm 
unit  is punched at one side of the mask. Photographs 
of the diffraction pat tern of the holes at the selected 
reciprocal lattice points alone and in combination 
with the straight row are then taken. The straight 
row acts as a diffraction grating giving streaks per- 
pendicular to the row which may be used to check the 
orientation of the final structure-factor graph. The 
streaks will be spaced a distance equivalent to 2 J~ 
apart  and may be used also to set the scale in enlarging 
the photograph. A final scale of 2 cm. = 1 ~ has been 
found convenient (i.e. streaks set to be 4 cm. apart). 

When it is necessary to change the phase of the light 
passing through some of the holes all the holes are 
covered with pieces of mica cut from the same optically 
uniform ~h~et ~bout 1-1 ~ thousandths of an inch thick, 
The mica covering the holes for which a phase change 
of ~ is required is rotated through 90 ° in its own plane 
with respect to tha t  covering holes requiring zero 
phase. A polarizer is mounted above the pinhole in the 
diffractometer and a crossed analyser placed between 
the lower mirror and the camera; the mask is inserted 
so tha t  both sets of mica sheets have their principal 
vibration directions at 45 ° to the plane of polarization 
(see Hanson & Lipson (1952) for fuller details and 
theory). 

Signs of the regions may be deduced either by in- 

Conclusions 

The optical technique described provides a method of 
producing structure-factor graphs which gives certain 
advantages over the use of calculated graphs. The 
production is rapid and simple for all two-dimensional 
space groups except for the four involving glide planes 
[pg, pmg, pgg, p4g]. For these the use of the mica 
technique for phase changing brings added complica- 
tions. 

For non-centrosymmetrical groups the graph for the 
complex function is easily produced and gives useful 
information about sensitivity of atoms to movement. 
In order to make use of the graph to predict the result 
of changes in position it is necessary to know the 
phases and hence the real and imaginary parts are 
needed separately. Again the real part  is simple but  
the mica technique must be used for the imaginary 
part. Useful indications, however, can often be ob- 
tained by the combined use of the complex graph and 
the real-part graph ; with a little experience the general 
form of the imaginary part  can be inferred. 

By suitable choice of scale the graphs are produced 
for the true unit-cell shape; it is not necessary to use 
graphs distorted to a square unit cell. Production is 
so rapid tha t  separate graphs can be prepared for 
multiple indices [e.g. 200, 400, 600, etc.], thereby 
minimizing the risk of errors which could very easily 
be made when using the same graph for a number of 
different indices, as is normally done with calculated 
graphs. 

I t  is not claimed that  the optically produced graphs 
are as accurate as those prepared by calculations; 
it is felt, however, tha t  they may form a useful 
addition to the list of techniques available to those 
who have optical diffraction equipment. 

We wish to thank Prof. H. Lipson for his interest 
and for helpful discussion. 
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(c) ~ :  

Fig. 1. (a) Optically derived s t ruc ture- fac tor  graph  for the  
two-dimensional  space group p6m wi th  h ~ 1, k ~ 2. This 
graph m a y  also be regarded as the  real pa r t  for the  two- 
dimensional  space group p3ml with  h ~-1 ,  ]¢ ~ 2. (b) 
Calculated graph (after Bragg & Lipson,  1936) correspond- 
ing to the  optical g raph  of l(a).  (c) Contact  pr in t  f rom 
mask  used for 1 (a). 

(c) 

Fig. 2. (a) Optically der ived s t ructure-factor  graph  for the  • 
imaginary  pa r t  for two-dimensional  space group p3ml with 
h ---- 1, k ---- 2. (b) Calculated graph (after Bragg & Lipson,  
1936) corresponding to the  optical graph of 2(a). (c) 
Contact  pr in t  f rom mask  used for 2 (a); mica str ips used for 
phase changing are indicated in outl ine wi th  their  corre- 
sponding v ibra t ion  directions shown by  arrows. 

(c) 1¢) 

Fig. 3. (a) Optically der ived complex s t ruc ture- fac tor  graph  
for the  two-dimensional  space group p3ml with  h----1, 
k -  2. (b) Zero contours  f rom Fig. l(b) and  Fig. 2(b) 
super imposed;  the  points  of intersect ion,  which are marked ,  
represent  zero points  of the  complex graph.  (c) Contac t  
p r in t  f rom mask  used for 3(a). 

Fig. 4. (a) Optically der ived s t ructure-factor  graph for the  
two-dimensional  space group p4m with  h = 2, k = 3. (b) Cal- 
cula ted graph  (after Bragg & Lipson, 1936) corresponding 
to the  optical  g raph  of 4 (a). (c) Contact  p r in t  f rom mask  
used for 4(a). 

Ic) 

Fig. 5. (a) Optically der ived s t ructure-factor  graph  for the  
two-dimensional  space group p49. wi th  (h~-k) odd ;  h ---- 2, 
k -- 3. (b) Calculated graph  (after Bragg & Lipson,  1936) 
corresponding to the  optical  graph of 5(a). (c) Contact  
p r in t  f rom m a s k  used for 5(a); mica str ips used for phase 
changing  are indica ted  in out l ine wi th  their  corresponding 
v ibra t ion  directions shown by  arrows. 

[To face p. 338  
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D e t e r m i n a t i o n  of the  P o s i t i o n s  of M o l e c u l e s  in a U n i t  Cell  

BY JAMES TROTTER* 

Division of Pure Physics, National Research Council, Ottawa, Canada 

(Received 10 November 1958) 

Taylor's method for determining the relative positions of molecules in projections with plane group 
pgg has been extended so that  the choice of useful reflexions is less restricted and the final result is 
more precise. 

Introduct ion 

In  invest igat ing crystal  structures by  X- ray  diffrac- 
t ion methods it is often possible to determine the shape 
and  orientat ion of molecules by  Fourier- t ransform 
methods or by  interpret ing the int ramolecular  vectors 
in Pat terson projections. Wi th  this informat ion avail- 
able, the relat ive positions of the molecules in a projec- 
t ion with plane group p2 m a y  be derived by  a method 
described by  Taylor (1954), which involves sett ing 
up equations for a par t icular  reflexion hk which l imit  
the choice of the true origin to points which lie on a 
fami ly  of s t raight  fines of slope -h /k .  If the equations 
are set up for a second plane, a second fami ly  of 
s traight  lines is produced and the origin mus t  lie at  
an intersection of the two sets of lines. By  adding 
lines for fur ther  reflexions all bu t  one of the inter- 
sections m a y  be eliminated.  

In  theory  all the reflexions can be used in applying 
the method,  bu t  practical  considerations indicate tha t  
great care is necessary in selecting the reflexions to 
be used, and some general rules are given, the most 
impor tan t  for the present discussion being: 

(1) Since the scale factor is general ly not  accurately 
known in the init ial  stages of the analysis,  i t  is im- 
por tan t  to use reflexions which are unobserved or 
have  small  observed values, and which lie on high 
parts  of the t ransform of a single molecule. 

Taylor  then  extends the method,  with slight modifi- 
cations, to plane group pgg with four molecules in the 
uni t  cell. An impor tan t  addi t ional  condition is intro- 
duced: 

(2) Reflexions must  be chosen for which the  con- 
t r ibut ion  of one molecule of the pair  of molecules 
related by a centre of s y m m e t r y  at  (0, 0) is large, 

* National Research Council Postdoctorate Fellow. 

and the contr ibut ion of one molecule of the  pair  at  
(1-, ½) is zero. 

This extra condition restricts the choice of useful 
reflexions so much  tha t  ' in order to obta in  enough 
usable reflexions it is necessary to relax the  condit ion 
and make  allowance for the margin  of error intro- 
duced'.  The loci of possible positions for the origin 
are then  no longer families of lines but  families of 
bands of width  depending on the deviat ion from zero 
of the contr ibut ion of the second molecule. 

Recent ly  Taylor  & Morley (1959) have  shown tha t  
in certain cases condit ion (2) cannot  be satisfied, and 
they  describe a modified method  which overcomes this 
difficulty. While inves t igat ing the crystal  s t ructure of 
ni t romesi tylene (Trotter, 1959) we found it  advan-  
tageous to apply  a similar  type  of modification,  and  
the method is presented here since it  shows clearly 
how these modified methods  are related to Taylor 's  
original procedure. 

T h e o r y  for plane group p g g  

If (x~, yj) are the coordinates of the atoms in a mole- 
cule with respect to some fixed point  wi th in  the mole- 
cule (the centre of an aromatic  ring for example)  and  
(X, Y) are the coordinates of this molecular  centre 
with respect to the crystal lographic origin, then  the  
structure factor expressions for plane group pgg are 

F = 4• cos 2z~h(xj+X).cos 2~k(y l+  Y) 
when h + k  = 2 n  

F = -4-~ sin 2z~h(xj+X).sin 2~/c(yj+ Y) 
when h + k = 2 n + l .  

The expression for (h + k) even can be readi ly  expanded 
to 


